--- title: "5. Quick start" output: rmarkdown::html_vignette vignette: > %\VignetteIndexEntry{5. Quick start} %\VignetteEngine{knitr::rmarkdown} %\VignetteEncoding{UTF-8} --- ```{r, include = FALSE} knitr::opts_chunk$set( collapse = TRUE, comment = "#>" ) ``` ```{r setup} library(quollr) library(tibble) ``` In here, we use `fit_highd_model()` function to construct the model in 2D and high-dimensional space using the provided training data (`s_curve_noise_training`) and the precomputed scaled UMAP embeddings (`s_curve_noise_umap_scaled`). The function takes various parameters to configure the model construction process, such as hexagonal binning parameters (`bin1`, `s1`, `s2`, `r2``), and options for binning and hexagon visualization. ```{r, message=FALSE} r2 <- diff(range(s_curve_noise_umap$UMAP2))/diff(range(s_curve_noise_umap$UMAP1)) model <- fit_highd_model(training_data = s_curve_noise_training, emb_df = s_curve_noise_umap_scaled, bin1 = 6, r2 = r2, is_bin_centroid = TRUE, is_rm_lwd_hex = FALSE, col_start_highd = "x") ## 2D model glimpse(model$df_bin) ## high-D model glimpse(model$df_bin_centroids) ```