--- title: "1. Data preprocessing" output: rmarkdown::html_vignette vignette: > %\VignetteIndexEntry{1. Data preprocessing} %\VignetteEngine{knitr::rmarkdown} %\VignetteEncoding{UTF-8} --- ```{r, include = FALSE} options(rmarkdown.html_vignette.check_title = FALSE) knitr::opts_chunk$set( collapse = TRUE, comment = "#>", warning = FALSE, message = FALSE ) ``` Here, we'll walk through the process of preprocessing 2D embedding data to obtain regular hexagons. ```{r setup} library(quollr) library(dplyr) ``` First, you'll need 2D embedding data generated for your training data. For our example, we'll use a 3-$d$ S-curve dataset with four additional noise dimensions. We've used UMAP as our non-linear dimension reduction technique to generate embeddings for the S-curve data. ```{r} scaled_umap <- gen_scaled_data(data = s_curve_noise_umap) glimpse(scaled_umap) ``` `gen_scaled_data` function preprocesses the 2D embedding data to obtain regular hexagons.