Package: quollr 0.2.4

quollr: Visualising How Nonlinear Dimension Reduction Warps Your Data
To construct a model in 2D space from 2D embedding data and then lift it to the high-dimensional space. Additionally, it provides tools to visualize the model in 2D space and to overlay the fitted model on data using the tour technique. Furthermore, it facilitates the generation of summaries of high-dimensional distributions.
Authors:
quollr_0.2.4.tar.gz
quollr_0.2.4.zip(r-4.5)quollr_0.2.4.zip(r-4.4)quollr_0.2.4.zip(r-4.3)
quollr_0.2.4.tgz(r-4.5-any)quollr_0.2.4.tgz(r-4.4-any)quollr_0.2.4.tgz(r-4.3-any)
quollr_0.2.4.tar.gz(r-4.5-noble)quollr_0.2.4.tar.gz(r-4.4-noble)
quollr_0.2.4.tgz(r-4.4-emscripten)quollr_0.2.4.tgz(r-4.3-emscripten)
quollr.pdf |quollr.html✨
quollr/json (API)
NEWS
# Install 'quollr' in R: |
install.packages('quollr', repos = c('https://jayanilakshika.r-universe.dev', 'https://cloud.r-project.org')) |
Bug tracker:https://github.com/jayanilakshika/quollr/issues
- s_curve_noise - S-curve dataset with noise dimensions
- s_curve_noise_test - S-curve dataset with noise dimensions for test
- s_curve_noise_training - S-curve dataset with noise dimensions for training
- s_curve_noise_umap - UMAP embedding for S-curve dataset which with noise dimensions
- s_curve_noise_umap_predict - Predicted UMAP embedding for S-curve dataset which with noise dimensions
- s_curve_noise_umap_scaled - Scaled UMAP embedding for S-curve dataset which with noise dimensions
- s_curve_obj - Object for S-curve dataset
Last updated 1 days agofrom:87864a4a3f. Checks:9 ERROR. Indexed: yes.
Target | Result | Latest binary |
---|---|---|
Doc / Vignettes | FAIL | Mar 30 2025 |
R-4.5-win | ERROR | Mar 30 2025 |
R-4.5-mac | ERROR | Mar 30 2025 |
R-4.5-linux | ERROR | Mar 30 2025 |
R-4.4-win | ERROR | Mar 30 2025 |
R-4.4-mac | ERROR | Mar 30 2025 |
R-4.4-linux | ERROR | Mar 30 2025 |
R-4.3-win | ERROR | Mar 30 2025 |
R-4.3-mac | ERROR | Mar 30 2025 |
Exports:assign_dataaugmentavg_highd_datacal_2d_distcalc_bins_ycomb_all_data_modelcomb_all_data_model_errorcomb_data_modelcompute_mean_density_hexcompute_std_countsextract_hexbin_centroidsextract_hexbin_meanfind_lg_benchmarkfind_low_dens_hexfind_non_empty_binsfind_ptsfit_highd_modelgen_centroidsgen_edgesgen_hex_coordgen_proj_langevitourgen_scaled_datageom_hexgridgeom_trimeshget_min_indicesglancehex_binningpredict_embshow_error_link_plotsshow_langevitourshow_link_plotsstat_hexgridstat_trimeshtri_bin_centroidsvis_lg_meshvis_rmlg_mesh
Dependencies:askpassassertthatbase64encbslibcachemclicodetoolscolorspacecpp11crosstalkcurldata.tabledeldirdigestdplyrevaluatefansifarverfastmapfontawesomefsfurrrfuturegenericsggplot2globalsgluegtablehighrhtmltoolshtmlwidgetshttrinterpisobandjquerylibjsonliteknitrlabelinglangevitourlaterlatticelazyevallifecyclelistenvmagrittrMASSMatrixmemoisemgcvmimemunsellnlmeopensslparallellypillarpkgconfigplotlypromisesproxypurrrR6RANNrappdirsRColorBrewerRcppRcppEigenrlangrmarkdownrsamplesassscalessliderstringistringrsystibbletidyrtidyselecttinytexutf8vctrsviridisLitewarpwithrxfunyaml